Cadmium stress in rice: toxic effects, tolerance mechanisms and management: a critical review

Author(s): Rizwan M, Ali S, Adrees M, Rizvi H, Rehman MZ, et al.

Abstract

Cadmium (Cd) is one of the main pollutants in paddy fields, and its accumulation in rice (Oryza sativa L.) and subsequent transfer to food chain is a global environmental issue. This paper reviews the toxic effects, tolerance mechanisms, and management of Cd in a rice paddy. Cadmium toxicity decreases seed germination, growth, mineral nutrients, photosynthesis, and grain yield. It also causes oxidative stress and genotoxicity in rice. Plant response to Cd toxicity varies with cultivars, growth condition, and duration of Cd exposure. Under Cd stress, stimulation of antioxidant defense system, osmoregulation, ion homeostasis, and over production of signaling molecules are important tolerance mechanisms in rice. Several strategies have been proposed for the management of Cd-contaminated paddy soils. One such approach is the exogenous application of hormones, osmolytes, and signaling molecules. Moreover, Cd uptake and toxicity in rice can be decreased by proper application of essential nutrients such as nitrogen, zinc, iron, and selenium in Cd-contaminated soils. In addition, several inorganic (liming and silicon) and organic (compost and biochar) amendments have been applied in the soils to reduce Cd stress in rice. Selection of low Cd-accumulating rice cultivars, crop rotation, water management, and exogenous application of microbes could be a reasonable approach to alleviate Cd toxicity in rice. To draw a sound conclusion, long-term field trials are still required, including risks and benefit analysis for various management strategies.

Similar Articles

Hyperaccumulators of metal and metalloid trace elements: facts and fiction

Author(s): Van DE, Baker A, Reeves AJM, Pollard RDS, Schat AJH

Silicon alleviates Cd stress of wheat seedlings (Triticumturgidum L

Author(s): Rizwan M, Meunier JD, Davidian JC, Pokrovsky OS, Bovet N, et al.

Root colonization by Pseudomonas sp

Author(s): Buddrus SK, Schmid M, Schreiner K, Welzl G, Hartmann A, et al.

Production of exo-polysaccharide by Rhizobium sp

Author(s): Sayyed RZ, Jamadar DD, Patel PR

Sustainable biochar to mitigate global climate change

Author(s): Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S, et al.

Effect of biochar on alleviation of cadmium toxicity in wheat (Triticumaestivum L

Author(s): Abbas T, Rizwan M, Ali S, Adrees M, Rehman MZ, et al.

Mitigating cadmium accumulation in greenhouse lettuce production using biochar

Author(s): Zheng R, Sun G, Li C, Reid BJ, Xie Z, et al.

Mycorrhizal responses to biochar in soil e concepts and mechanisms

Author(s): Warnock DD, Lehmann J, Kuyper TW, Rillig MC