Cytokine release assays for the prediction of therapeutic mAb safety in first-in man trials--Whole blood cytokine release assays are poorly predictive for TGN1412 cytokine storm

Author(s): Vessillier S, Eastwood D, Fox B, Sathish J, Sethu S, et al.

Abstract

The therapeutic monoclonal antibody (mAb) TGN1412 (anti-CD28 superagonist) caused near-fatal cytokine release syndrome (CRS) in all six volunteers during a phase-I clinical trial. Several cytokine release assays (CRAs) with reported predictivity for TGN1412-induced CRS have since been developed for the preclinical safety testing of new therapeutic mAbs. The whole blood (WB) CRA is the most widely used, but its sensitivity for TGN1412-like cytokine release was recently criticized. In a comparative study, using group size required for 90% power with 5% significance as a measure of sensitivity, we found that WB and 10% (v/v) WB CRAs were the least sensitive for TGN1412 as these required the largest group sizes (n = 52 and 79, respectively). In contrast, the peripheral blood mononuclear cell (PBMC) solid phase (SP) CRA was the most sensitive for TGN1412 as it required the smallest group size (n = 4). Similarly, the PBMC SP CRA was more sensitive than the WB CRA for muromonab-CD3 (anti-CD3) which stimulates TGN1412-like cytokine release (n = 4 and 4519, respectively). Conversely, the WB CRA was far more sensitive than the PBMC SP CRA for alemtuzumab (anti-CD52) which stimulates FcγRI-mediated cytokine release (n = 8 and 180, respectively). Investigation of potential factors contributing to the different sensitivities revealed that removal of red blood cells (RBCs) from WB permitted PBMC-like TGN1412 responses in a SP CRA, which in turn could be inhibited by the addition of the RBC membrane protein glycophorin A (GYPA); this observation likely underlies, at least in part, the poor sensitivity of WB CRA for TGN1412. The use of PBMC SP CRA for the detection of TGN1412-like cytokine release is recommended in conjunction with adequately powered group sizes for dependable preclinical safety testing of new therapeutic mAbs.

Similar Articles

Role of Interferons in the Development of Diagnostics, Vaccines, and Therapy for Tuberculosis

Author(s): Chin KL, Anis FZ, Sarmiento ME, Norazmi MN, Acosta A, et al.

Role of Type I and II Interferons in Colorectal Cancer and Melanoma

Author(s): Di Franco S, Turdo A, Todaro M, Stassi G

Innate immune response induced by gene delivery vectors

Author(s): Sakurai H, Kawabata K, Sakurai F, Nakagawa S, Mizuguchi H, et al.

Analysis of Pro-inflammatory Cytokine and Type II Interferon Induction by Nanoparticles

Author(s): Potter TM, Neun BW, Rodriguez JC, Ilinskaya AN, Dobrovolskaia MA, et al.

More than 70 years of pyrogen detection: Current state and future perspectives

Author(s): Fennrich S, Hennig U, Toliashvili L, Schlensak C, Wendel HP, et al.

Evidence for the detection of non-endotoxin pyrogens by the whole blood monocyte activation test

Author(s): Hasiwa N, Daneshian M, Bruegger P, Fennrich S, Hochadel A, et al.

International validation of novel pyrogen tests based on human monocytoid cells

Author(s): Hoffmann S, Peterbauer A, Schindler S, Fennrich S, Poole S, et al.

Nucleic acids as therapeutic agents

Author(s): Alvarez-Salas LM

Immune stimulation--a class effect of phosphorothioate oligodeoxynucleotides in rodents

Author(s): Monteith DK, Henry SP, Howard RB, Flournoy S, Levin AA, et al.

Aptamers as therapeutics

Author(s): Keefe AD, Pai S, Ellington A

5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I

Author(s): Schmidt A, Schwerd T, Hamm W, Hellmuth JC, Cui S, et al.