Innate immune response induced by gene delivery vectors

Author(s): Sakurai H, Kawabata K, Sakurai F, Nakagawa S, Mizuguchi H, et al.

Abstract

Gene therapy is a clinical strategy that has the potential to treat an array of genetic and nongenetic diseases. Vectors for gene transfer are the essential tools of gene therapy. For gene therapy to be successful, an appropriate amount of the therapeutic gene must be delivered into the target cells without substantial toxicity. A major limitation of the use of gene therapy vectors is the innate immune responses triggered by systemic administration of such vectors. It is essential to overcome vector-mediated innate immune responses, such as production of inflammatory cytokines, the maturation of antigen-presenting cells and tissue damage, because the induction of these responses not only shortens the period of gene expression but also leads to serious side effects. Viral vectors (for example, adenovirus (Ad) vectors) have been assumed to be more potent in inducing innate immune responses in spite of their high transduction efficiency since they contain pathogenic proteins. However, recent studies have demonstrated that not only viral vectors but also nonviral vectors, such as lipoplex (liposome/plasmid DNA complex), can induce innate immune responses. Indeed, nonviral vectors including lipoplex induce comparable or larger levels of innate immune response than viral vectors. In this review, we present an overview of the innate immune responses induced by Ad vector and lipoplex, which are used primarily for in vivo gene transfer.

Similar Articles

Role of Interferons in the Development of Diagnostics, Vaccines, and Therapy for Tuberculosis

Author(s): Chin KL, Anis FZ, Sarmiento ME, Norazmi MN, Acosta A, et al.

Role of Type I and II Interferons in Colorectal Cancer and Melanoma

Author(s): Di Franco S, Turdo A, Todaro M, Stassi G

Analysis of Pro-inflammatory Cytokine and Type II Interferon Induction by Nanoparticles

Author(s): Potter TM, Neun BW, Rodriguez JC, Ilinskaya AN, Dobrovolskaia MA, et al.

More than 70 years of pyrogen detection: Current state and future perspectives

Author(s): Fennrich S, Hennig U, Toliashvili L, Schlensak C, Wendel HP, et al.

Evidence for the detection of non-endotoxin pyrogens by the whole blood monocyte activation test

Author(s): Hasiwa N, Daneshian M, Bruegger P, Fennrich S, Hochadel A, et al.

International validation of novel pyrogen tests based on human monocytoid cells

Author(s): Hoffmann S, Peterbauer A, Schindler S, Fennrich S, Poole S, et al.

Nucleic acids as therapeutic agents

Author(s): Alvarez-Salas LM

Immune stimulation--a class effect of phosphorothioate oligodeoxynucleotides in rodents

Author(s): Monteith DK, Henry SP, Howard RB, Flournoy S, Levin AA, et al.

Aptamers as therapeutics

Author(s): Keefe AD, Pai S, Ellington A

5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I

Author(s): Schmidt A, Schwerd T, Hamm W, Hellmuth JC, Cui S, et al.