Nucleic acids as therapeutic agents

Author(s): Alvarez-Salas LM

Abstract

Therapeutic nucleic acids (TNAs) and its precursors are applied to treat several pathologies and infections. TNA-based therapy has different rationales and mechanisms and can be classified into three main groups: 1) Therapeutic nucleotides and nucleosides; 2) Therapeutic oligonucleotides; and 3) Therapeutic polynucleotides. This review will focus in those TNAs that have reached clinical trials with anticancer and antiviral protocols, the two most common applications of TNAs. Although therapeutic nucleotides and nucleosides that interfere with nucleic acid metabolism and DNA polymerization have been successfully used as anticancer and antiviral drugs, they often produce toxic secondary effects related to dosage and continuous use. The use of oligonucleotides such as ribozyme and antisense oligodeoxynucleotides (AS-ODNs) showed promise as therapeutic moieties but faced several issues such as nuclease sensitivity, off-target effects and efficient delivery. Nevertheless, immunostimulatory oligodeoxynucleotides and AS-ODNs represent the most successful group of therapeutic oligonucleotides in the clinic. A newer group of therapeutic oligonucleotides, the aptamers, is rapidly advancing towards early detection and treatment alternatives the have reached the commercial interest. Despite the very high in vitro efficiency of small interfering RNAs (siRNAs) they present issues with intracellular target accessibility, specificity and delivery. DNA vaccines showed great promise, but they resulted in very poor responses in the clinic and further development is uncertain. Despite their many issues, the exquisite specificity and versatility of therapeutic oligonucleotides attracts a great deal of research and resources that will certainly convert them in the TNA of choice for treating cancer and viral diseases in the near future.

Similar Articles

Role of Interferons in the Development of Diagnostics, Vaccines, and Therapy for Tuberculosis

Author(s): Chin KL, Anis FZ, Sarmiento ME, Norazmi MN, Acosta A, et al.

Role of Type I and II Interferons in Colorectal Cancer and Melanoma

Author(s): Di Franco S, Turdo A, Todaro M, Stassi G

Innate immune response induced by gene delivery vectors

Author(s): Sakurai H, Kawabata K, Sakurai F, Nakagawa S, Mizuguchi H, et al.

Analysis of Pro-inflammatory Cytokine and Type II Interferon Induction by Nanoparticles

Author(s): Potter TM, Neun BW, Rodriguez JC, Ilinskaya AN, Dobrovolskaia MA, et al.

More than 70 years of pyrogen detection: Current state and future perspectives

Author(s): Fennrich S, Hennig U, Toliashvili L, Schlensak C, Wendel HP, et al.

Evidence for the detection of non-endotoxin pyrogens by the whole blood monocyte activation test

Author(s): Hasiwa N, Daneshian M, Bruegger P, Fennrich S, Hochadel A, et al.

International validation of novel pyrogen tests based on human monocytoid cells

Author(s): Hoffmann S, Peterbauer A, Schindler S, Fennrich S, Poole S, et al.

Immune stimulation--a class effect of phosphorothioate oligodeoxynucleotides in rodents

Author(s): Monteith DK, Henry SP, Howard RB, Flournoy S, Levin AA, et al.

Aptamers as therapeutics

Author(s): Keefe AD, Pai S, Ellington A

5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I

Author(s): Schmidt A, Schwerd T, Hamm W, Hellmuth JC, Cui S, et al.